Please check the examination det	ails belov	before ente	ring your can	didate info	
Candidate surname			Other name	es	
Pearson Edexcel	Centr	e Number		Candida	ite Number
Level 3 GCE					
Friday 23 Oct	toh	or 2	020		
Filday 23 Oct		er z	020		
Afternoon (Time: 1 hour 30 minu	utes)	Paper R	eference 9	FMO/4	łC
Further Mathematics					
Advanced					
Paper 4C: Further Mechanics 2					
aper 4c. rurtiler Mec	IIIIII	.5 2			
You must have:					Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator					
			,,		Jl

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a value of g is required, take $g = 9.8 \,\mathrm{m \, s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

		1/3
1.	Three particles of masses $3m$, $4m$ and $2m$ are placed at the points $(-2, 2)$, $(3, 1)$ and (p, p) respectively.	*th _{sci}
	The value of p is such that the distance of the centre of mass of the three particles from the point $(0, 0)$ is as small as possible.	
	Find the value of p .	
	•	(7)

	mn.n. y
Question 1 continued	www.mymathson
(Total fo	or Question 1 is 7 marks)

2.

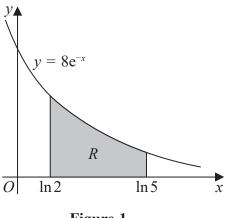


Figure 1

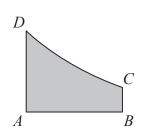


Figure 2

A uniform plane figure R, shown shaded in Figure 1, is bounded by the x-axis, the line with equation $x = \ln 5$, the curve with equation $y = 8e^{-x}$ and the line with equation $x = \ln 2$. The unit of length on each axis is one metre.

The area of R is $2.4 \,\mathrm{m}^2$

The centre of mass of R is at the point with coordinates (\bar{x}, \bar{y}) .

(a) Use algebraic integration to show that $\bar{y} = 1.4$

(4)

Figure 2 shows a uniform lamina ABCD, which is the same size and shape as R. The lamina is freely suspended from C and hangs in equilibrium with CB at an angle θ° to the downward vertical.

(b) Find the value of θ

(6)

	nun nu
Question 2 continued	www.mymathsc.

Question 2 continued	"SOL

	nun n
Question 2 continued	www.mymathsold
	(Total for Question 2 is 10 marks)

3. A particle P of mass 0.5 kg is moving along the positive x-axis in the direction of x increasing. At time t seconds $(t \ge 0)$, P is x metres from the origin O and the speed of P is v m s⁻¹. The resultant force acting on P is directed towards O and has magnitude kv^2 N, where k is a positive constant.

When x = 1, v = 4 and when x = 2, v = 2

(a) Show that $v = ab^x$, where a and b are constants to be found.

(6)

The time taken for the speed of P to decrease from $4 \,\mathrm{m\,s^{-1}}$ to $2 \,\mathrm{m\,s^{-1}}$ is T seconds.

(b) Show that
$$T = \frac{1}{4 \ln 2}$$

(4)

	mn. my
Question 3 continued	www.mymathsold

Question 3 continued	1sc/c

	nun n
Question 3 continued	www.mymarnsch
	(Total for Question 3 is 10 marks)

NOT WRITE IN THIS AREA

4.

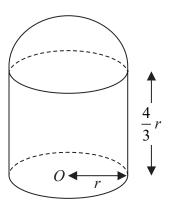


Figure 3

A uniform solid cylinder of base radius r and height $\frac{4}{3}r$ has the same density as a uniform solid hemisphere of radius r. The plane face of the hemisphere is joined to a plane face of the cylinder to form the composite solid S shown in Figure 3. The point O is the centre of the plane face of S.

(a) Show that the distance from O to the centre of mass of S is $\frac{73}{72}r$

(4)

The solid S is placed with its plane face on a rough horizontal plane. The coefficient of friction between S and the plane is μ . A horizontal force P is applied to the highest point of S. The magnitude of P is gradually increased.

(b) Find the range of values of μ for which S will slide before it starts to tilt.

(5)

	mm. my
Question 4 continued	www.mymathsold

Question 4 continued	ns _{Ol}

	nnn n
Question 4 continued	www.mymathsol
	(Total for Question 4 is 9 marks)
	(2000 101 Xuosuon 1 10) Illus Illus

5.

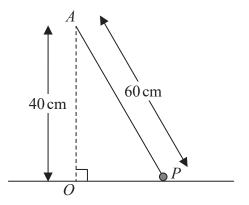


Figure 4

A particle P of mass 0.75 kg is attached to one end of a light inextensible string of length 60 cm. The other end of the string is attached to a fixed point A that is vertically above the point O on a smooth horizontal table, such that $OA = 40 \,\mathrm{cm}$. The particle remains in contact with the table, with the string taut, and moves in a horizontal circle with centre O, as shown in Figure 4.

The particle is moving with a constant angular speed of 3 radians per second.

- (i) the tension in the string, (a) Find
 - (ii) the normal reaction between P and the table.

(7)

The angular speed of *P* is now gradually increased.

(b) Find the angular speed of P at the instant P loses contact with the table.

(4)

	mm. my
Question 5 continued	www.mymathsold

Question 5 continued	11sc/0

	nun.nu nu
Question 5 continued	www.mymathsol
	(Total for Question 5 is 11 marks)

6.

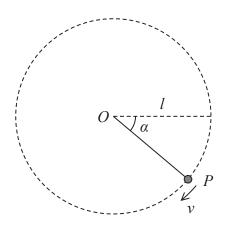


Figure 5

A particle P of mass m is attached to one end of a light inextensible string of length l. The other end of the string is attached to a fixed point O. The particle is held with the string taut and OP horizontal. The particle is then projected vertically downwards with speed u, where $u^2 = \frac{9}{5}gl$. When OP has turned through an angle α and the string is still taut, the speed of P is v, as shown in Figure 5. At this instant the tension in the string is T.

(a) Show that
$$T = 3mg \sin \alpha + \frac{9}{5}mg$$

(6)

DO NOT WRITE IN THIS AREA

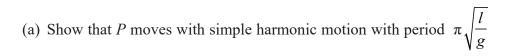
(b) Find, in terms of g and l, the speed of P at the instant when the string goes slack.

(3)

(c) Find, in terms of l, the greatest vertical height reached by P above the level of O.

(4)

	mm. M. M.
Question 6 continued	www.mymathsci



Question 6 continued	Msch

	nun n
Question 6 continued	www.mymarnscle
	(Total for Question 6 is 13 marks)

7. A light elastic spring has natural length l and modulus of elasticity 4mg. A particle P of mass m is attached to one end of the spring. The other end of the spring is attached to a fixed point A. The point B is vertically below A with $AB = \frac{7}{4}l$. The particle P is released from rest at B.

- **(7)**
- (b) Find, in terms of m, l and g, the maximum kinetic energy of P during the motion.
- (3)
- (c) Find the time within each complete oscillation for which the length of the spring is less than *l*.
- **(5)**

	mm my my
Question 7 continued	www.mymathsold

Question 7 continued	100

	www.mymathscle
	n.n. h.
	Math
Question 7 continued	30/6

Question 7 continued	The colo
	(Total for Question 7 is 15 marks)
	TOTAL FOR PAPER IS 75 MARKS